
Chapter 15

Testing native Windows applications

5.0+

15.1 Getting started

This chapter covers automation and testing of Windows desktop applications, namely

• Classical Win32 applications,

• .NET applications based on Windows Presentation Foundation (WPF) or Windows
Forms,

• Universal Windows Platform (UWP) applications using XAML controls.

All these kinds of applications support Microsoft UI Automation or Microsoft Active Ac-
cessibility (MSAA) for software test automation, joined together in the Windows Automa-
tion API, please see section 15.2(157) for background information.

As a precondition of testing, QF-Test first needs a connection with the respective pro-
cess. An appropriate Setup sequence can be created by help of the Quickstart Wizard(28)

from the Extras menu. Choose ’A native Windows application’ as application type then.

If your application is already up and running, just specify a regular expression for the title
of its (main) window, for example .*- Editor for the Windows Notepad application.
Otherwise give the path to your Windows executable (.exe) so that QF-Test can start the
program, please see Launching/Attaching to an application(157) for details.

Once the application is connected to QF-Test (as GUI engine
(532) win), capture and re-

play can be performed as described in chapter 4(33). However, due to the nature of UI
Automation, you should observe the recording rules listed in section 15.4(158).

A few example test-suites can be found in the QF-Test installation folder, namely

• qftest-5.0.0-ea/demo/carconfigForms/winDemoForms_en.qft



15.2. Technical background 157

• qftest-5.0.0-ea/demo/carconfigWpf/winDemoWPF_en.qft

• qftest-5.0.0-ea/demo/windows/*.qft

Also have a look at the (Current) Limitations(162), most of which are expected to be fixed
or improved in future releases of QF-Test.

15.2 Technical background

A common framework for all Windows-based applications is the Windows Automation
API consisting of Microsoft’s Active Accessibility and its successor, Microsoft UI Au-
tomation. Being it the heart of the win engine, QF-Test is now able to control virtually
all kinds of Windows applications.

A Windows application has to expose so-called Providers in order to follow the rules
of UI Automation. This is done automatically when a framework like WPF is used to
develop a program. This is also done for Win32 applications via proxy providers. That
means, how good an application can be controlled and tested depends on the quality
of the respective providers, i.e. usually on the framework used in application develop-
ment. For example, as UI Automation was introduced along with WPF, these kinds of
applications are supposed to be testable quite well. And when you wonder what cannot
be tested via UI Automation, try out a Java Swing application. However, there is already
a pretty good tool available when you want to deal with Swing ...

A test application that wants to control a program via UI Automation can get hold
of so called Automation Elements which represent the actual UI elements in the
SUT (System Under Test). Though every automation element has a control type (like
Button, MenuItem, etc.), its actual functionality - for example, setting a value in a text
field - depends on Control Patterns implemented by the respective providers.

To deal with the UI Automation framework, QF-Test starts a special Java program which
serves as UI Automation client application. That program can access all UI Automation
elements in a given process and handle them according to the rules of QF-Test (e.g.
create a snapshot of an element as Component

(667)).

15.3 Launching/Attaching to an application

Testing a native Windows application does not require you to launch that application
from QF-Test. You can also connect to a running process and that way even control
parts of the operating system, for example the Windows Taskbar.

In order to connect to a process you can specify a regular expression for the window
title or the respective process ID or the window’s UI Automation class name. Strictly



15.4. Recording 158

speaking, that window must not be a Window but could also be a Pane or a Menu in
terms of UI Automation control types. Whatever feature is used for attaching, QF-Test
will eventually determine the respective process ID and treat exactly that process as the
actual client application (SUT).

To connect just define the attribute Window title (RegExp)
(555) in the Start Windows client

(555)

node and this can be

• a regular expression for the title

• -pid <process ID>

• -class <class name>

For example, by specifying .*- Editor you can attach to a running Windows Notepad
application, while -class Shell_TrayWnd will address the Windows Taskbar.

In order to find out the titles, process IDs and class names of running programs, you can
run the procedure qfs.autowin.logUIAToplevels in qfs.qft, cf. The standard
library(115).

Besides attaching to a running process, it is also possible to launch a program from the
Start Windows client node. To this end, specify the path to the respective executable in
the Windows application

(555) attribute.

In some cases, it can also be useful to define both the Windows application and the
Window title (RegExp) attribute. QF-Test will then first try to attach. If that fails, the given
program will be started and connected via its process ID. If that fails too - the process
may launch a child process and terminate itself or may not display a (graphical) user
interface - another attempt to attach is made.

When you terminate a win client in QF-Test (either via the Stop client
(558) node or from

the Clients menu), the respective UI Automation client process will be stopped along
with its sub-processes. That is, your actual SUT will terminate as well, if you started
it from QF-Test. On the other hand, the SUT will not be stopped when it was running
before you attached to it.

When you close the SUT, the UI Automation client will terminate as well.

To attach to an elevated processes (presenting the UAC prompt), you have to launch
QF-Test as adminstrator.

15.4 Recording

After connecting QF-Test with the SUT, you can record events (section 4.1(33)), checks
(section 4.3(36)) and components (section 4.4(37)).



15.5. Components 159

However, as the communication between the SUT and the QF-Test UI Automation client
is handled by Windows (the UI Automation core), accessing elements is not quite as
fast as you may know it from the QF-Test Java automation. Furthermore, in contrast
to Java and Web testing (QF-Driver), events are processed asynchronously, i.e. you
cannot expect that an application’s dispatch thread is blocked while QF-Test is handling
an event.

That makes recording more difficult, because a target element might be destroyed by
the action to be recorded, for example when selecting an entry from a ComboBox or
clicking on a button that closes its parent window.

So you’d best get into the habit of following a few recording rules:

• Activate the recording mode and move the mouse over the element for which you
want to record an event.

• As QF-Test may take a little time to retrieve information about the element below
the mouse cursor, a red pane is displayed until it is done; the little ’QF-Test Element
Information’ window will then show which automation element was found.

• Now perform the mouse click to be recorded.

• When a mouse click will close a dialog or window (might also be a popup display-
ing a list), make sure to perform the click slowly, i.e. do not release the mouse
button immediately after pressing it so that QF-Test has the opportunity to gather
information before the window will disappear (when the mouse release is done).

• When recording checks or components, the respective frame around the element
is drawn almost immediately when the mouse is hovering over an automation ele-
ment. Before recording a check, you should wait until the frame disappears.

• When the SUT shows two or more windows, make sure that they do not overlap
before entering the check recording mode.

Sometimes check recording (and transforming the node afterwards) may work better
than event recording, for example when a click on a button (like OK, Cancel) closes the
respective dialog or when a mouse down event recreates elements (for example the
accessory table in the CarConfiguratorNet WPF demo application). In check recording
mode QF-Test covers the SUT with an (almost) invisible window to prevent mouse clicks
from triggering an action in the client application.

15.5 Components

In QF-Test an automation element is recorded (or can be inserted manually, of course)
as Window

(657) or Component
(667) and stored within the Windows and components

(678) node.



15.6. Playback and Patterns 160

The QF-Test (generic) Class name often corresponds to the type of the UI Automation
element, for example Button. To be able to differentiate between the UI Automation
type and the generic class name, QF-Test adds a prefix Uia. to the type. Similarly, the
UI Automation framework specifier is used as prefix for the automation element’s class.
So you may for example see a classname: WPF.DataGrid in the Extra features of a
Table component recorded in a WPF application.

QF-Test does not strictly follow the hierarchy of the UI Automation elements. That is
often the case with dialogs (like Notepad’s Font dialog) which are usually listed below
the main application window in the UI Automation tree. From the Win32 perspective
as well as what QF-Test users would expect, such dialogs are also top-levels and thus
listed as a sibling of the main window below Windows and components. On the other hand,
a context menu can be a top-level in the UI Automation tree, but may be a window’s child
in QF-Test.

15.6 Playback and Patterns

The QF-Test win engine usually records mouse clicks with the Replay as ”hard” event

attribute. That is the safe way, i.e. a ”hard” mouse click is likely to actually trigger the
desired action.

However, UI Automation supports various ”soft” actions which do not rely on mouse
events. For example, to trigger a button’s action you can play back

+Select: invoke [myButtonID]

The effect should be the same as with

+Mouse click [myButtonID]

but no mouse is involved when using the Selection node. Instead, the UI Automation
core will trigger the execution of a provider’s Invoke() method in the SUT.

The Selection node does support the following actions in its Detail attribute:

• invoke: Usually equivalent with a mouse click.

• expand, collapse: Should expand/collapse a ComboBox, MenuItem or
TreeItem.

• select: Should select an item in a list (also use 0 as Detail). 1 and -1 are meant
to extend or reduce the selection when multi-selection is allowed.

• scroll:horiz%,vert%: Values between 0 and 100 are possible, defining the
position of the scroll location in percent; specify -1 when you do not want to change
a position (horizontally or vertically).



15.7. Scripting 161

The actions actually supported depend on an automation element’s patterns. They are
recorded among the Extra features of a component or can be determined in an SUT script

(see below).

What exactly a pattern means can vary from application to application. If, for example,
both SelectionItem and Invoke patterns are supported, Invoke might be prefer-
able because

+Select [list@item]

may only highlight the element but not trigger the respective action (e.g. Notepad Fonts).

Even worse, the formal support of a pattern does not mean that applying it has any
effect, for example scrolling an (invisible) entry in the list of Windows Calculator’s modes
into view (ScrollItem pattern). To get around the problem, you can simply play back
select here, whether or not the entry is currently visible.

As already mentioned above, because ”soft” playback may simply not work (due to the
provider implementation) or even block when a modal dialog is to be displayed (due
to COM method invocation), QF-Test records ”hard” mouse clicks by default. If you
deactivate the Replay as ”hard” event attribute, invoke is played back instead (only if the
respective pattern is supported by the element).

Regarding Key events, a text can only be set directly by a Text input node if the Value
pattern is supported. Otherwise single key events have to be played back.

15.7 Scripting

Internally, the win engine represents automation elements by a class WinControl. To
obtain an element in a Groovy SUT script

(530) node, run

def ctrl = rc.getComponent("myComponentID")
println ctrl

Example 15.1: Retrieving a WinControl in a Groovy SUT script

with the respective QF-Test component ID. The most important WinControl methods are

• getType(), getClassName(), getFramework(), getName(),
getId(), getHwnd(), getLocation(), getSize(),
getLocationOnScreen(), getPatterns(), hasPattern() to retrieve UI
Automation properties of the element

• getChildren(), getParent(), getChildrenOfType(),
getAncestorOfType(), getElementsByClassName() to traverse the
element hierarchy



15.8. Options 162

• getControl() to retrieve the respective control from the mmarque ui-automation
library. A snapshot of that library is part of the QF-Test releases.

15.8 Options

The behaviour of the win engine can be influenced via QF-Test options. For example,
you may sometimes want to play back an event on an element that is actually not visible
(it may not be scrolled into view). To perform an invoke event then, you may need to
get rid of the visibility test which is usually part of the component recognition. That is,
run

rc.setOption(Options.OPT_WIN_TEST_VISIBILITY, false)

in an SUT script node before playing back

+Select: invoke [myComponentID]

and afterwards

rc.unsetOption(Options.OPT_WIN_TEST_VISIBILITY)

to reset the original setting.

Another means to adapt QF-Test’s behaviour is to set parameters for the (native) Win-
Driver part serving as interface between Java and the Windows UI Automation. This is
also done in an SUT script via rc.engine.preferences(). For example,

def prefs = rc.engine.preferences()
prefs.setPref("windriver.restrict.tops.to.class", "false")

Example 15.2: Setting a preference in a Groovy SUT script

will revoke the (default) limitation to toplevels of the given class when using -class
<class name> to attach (toplevels of another class in the same process can then be
accessed too).

15.9 (Current) Limitations

There are a number of limitations in the current implementation status of the Windows
testing functionality. We will try to further improve things within the next versions, but
possibly not all of the following points will be resolved soon.

To avoid trouble with geometry (bounds of an element, coordinates for a hard mouse
events) the Windows scaling should be set to 100% when recording and replaying
events. This is supposed to be fixed in a future release of QF-Test.



15.10. Links 163

As the support for UI Automation depends on the framework used for application devel-
opment, the recording in QF-Test may not always be consistent. For example, a Wait for

component to appear node may or may not be recorded when opening a dialog.

Dealing with applications consisting of several processes requires several win clients
and can be tricky.

Further limitations / not yet implemented features (Jan 2019) are among other things

• Component recording does work only for a single component (not for children or
the full window). This is supposed to be fixed in a future release of QF-Test.

• Supported check types are incomplete. ’Text’, ’Image’, ’Geometry’ and ’Visible’ are
implemented for all WinControls. Additional checks may be available for Tables,
Lists and other types. This is supposed to be fixed in a future release of QF-Test.

• Elements in the title bar of a Windows app cannot be accessed (easily), because
they live in a different process. This might be improved in a future release of
QF-Test.

• MenuItems in .NET Forms application are not properly recorded, you only get a
mouse click on a menu popup with the respective location. Replay should work
though. This might be fixed in a future release of QF-Test. As a workaround you
may create yourself a generic MenuItem as described in section 33.6(331).

• Redirection from a Button’s Text element to the Button element is done when
recording a mouse click, but may be missing elsewhere. This is supposed to be
improved in a future release of QF-Test.

• Prefer Groovy to Jython in SUT script nodes. The latter does not yet support
WinControl.getControl(). This is supposed to be fixed in a future release of
QF-Test.

• Big hierarchies of automation elements may cause performance problems. This is
supposed to be improved in a future release of QF-Test.

15.10 Links

The Windows Automation API is described here: https://docs.microsoft.com/en-
US/windows/desktop/WinAuto/windows-automation-api-portal.

More about Mark Humphrey’s ui-automation Java library can be found on
https://github.com/mmarquee.


