
The Magazine for Professional Testers

June, 2009

IS
SN

 1
86

6-
57

05
 		


w

w
w.

te
st

in
ge

xp
er

ie
nc

e.
co

m
		

fre
e 

di
gi

ta
l v

er
si

on
		

pr
in

t v
er

si
on

 8
,0

0 
€	

pr
in

te
d 

in
 G

er
m

an
y

Security Testing

6

© iStockphoto/alexandru_lamba



86 The Magazine for Professional Testers www.testingexperience.com

Project-Based Test Automation
by David Harrison

© iStockphoto.com/Laborer

This article sets out a project-based experience 
of Automated Testing in the context of soft-
ware developed with the Java-Swing program-
ming framework. In terms of business domain, 
the software represented an advanced costing 
tool for use by underwriters in the re-insurance 
business. However, we focus here on the pat-
tern of solution more than the domain-specific 
re-insurance aspects.

This article is based on material from the forth-
coming book “Automated Functional Testing 
for Java-Swing”, to be published by the author 
in April, 2009.

Structure of Project QA Activities
The structure of the Quality Assurance (QA) 
activities in this project-based development 
setting, can be summarized as shown in Figure 
1, below:

In this pattern you can see that the ‘classic’ 
automated testing, of the type that we will ad-
dress here, is only one part of the overall Qual-
ity Assurance effort. The target of our QA work 
on this project was, from the outset, to develop 
a strategy which could be termed Agile, in that 
it fitted in with the iterative build cycle on the 
project, as well the highly seasonal nature of 
the development/deployment process itself.

Let’s take a look at each of the parts of this 
pattern in a little more detail:

Foundation

This part is really crucial to the success of a 
project-based QA/Test effort. Its role in the 
pattern is to set out the fundamental project is-
sues which must be achieved in order to maxi-
mise the success of the overall QA effort. This 
naturally affects also the possible successful 
outcome of any automated testing effort. For 
an automated testing effort to be given at least 
some chance of success, the QA/Test team 
needs strong support from both the IT as well 
as the business parts of a project. The collabo-
ration from the IT group is particularly impor-
tant for the pattern presented here, as we need 
IT involvement in specializing the application 
slightly to enable access to the internals of the 
application. 

In order for good collaboration to happen, 
such things as team engagement and having 
a clearly established set of roles & responsi-
bilities, is essential. Having a clear technical 
process set out is one thing, but this must be 
communicated to all project members by the 
QA workstream.

Unit Testing

A key part of the process, underpinning all 
the efforts that follow, is that of Unit Testing. 
Typically, the developers will use a standard 
unit testing framework, which for Java would 
most likely be JUnit1.

Defect Management

This part of the QA/Test process reflects that 
part which turns testing into a genuine Quality 
Assurance process. As hinted in the Founda-
tion part of the pattern, it is important for a de-
velopment project to recognize the importance 
of defects, not just as negative things to be got 
rid of, but as extremely positive, naturally oc-
curring items of project life. Indeed, defects 
are to be aggressively sought within a project if 
the deeply negative characteristics of them are 
to be avoided that of their impact on the user 

community if they are deployed to 
the productive environment.

Manual Testing

Yes – Manual Testing. This is al-
ways a theme in the project-based 
QA/Test story, particularly for 
projects that are at the very be-
ginning of their development. In 
these cases, it is quite usual that 
a large part of the functionality of 
the software will have to be manu-
ally tested. This arises from the 
unfortunate fact of project life that 
software in its initial development 
phase is usually highly volatile in 

terms of its user interface design, thus preclud-
ing automated testing.

Gadget Testing

This part of the testing process is a catch-all for 
the testing which uses specialist executables 
that fulfill specialist testing tasks. This form 
of testing would be used if the software being 

1	 http://www.junit.org

User Acceptance Test
End-to-End Testing

Manual
Testing

Gadget
Testing

‘Classic’
Automated 

Testing

Performance
Testing

Load
Testing

...

Unit Testing
Foundation: Team engagement
 Roles & responsibilities within the project
 Buy-in to QA/Test process from the project
 Establish & communicate the QA/Test process 

Figure 1 – QA/Test Pattern

D
ef

ec
t M

an
ag

em
en

t



87The Magazine for Professional Testerswww.testingexperience.com

developed has a mathematical result, for ex-
ample, which needs to be asserted. A specialist 
tool which, using known input data, causes the 
calculation to be performed and then compares 
the result to a known expected result, would be 
a good example of a “Gadget”.

Classic Automated Testing

This form of testing is the subject of this ar-
ticle. Suffice it to say here that this testing is 
characterized by exercising the built software 
through its User Interface (UI). We add here 
that, from the outset, the task of test automa-
tion was seen as essentially a coding task. With 
this mindset, we looked for “efficiency” in just 
the same way as any software development 
workstream would. Often test automation is 
viewed in quite the opposite way, the coding 
aspects being set to the background or hidden 
behind simplistic definitional “spreadsheets” 
and the like. Taking on board the mental model 
of “coding” releases us from seeking the false 
dawn associated with alternative approaches 
and endlessly struggling with the fundamen-
tals in order to achieve some sort of success-
ful, repeatable outcome.

Performance Testing

In this form of testing we seek to establish that 
the software meets the performance metrics 
defined for it, usually per business operation 
or functionality. There are a number of com-
mercial and open-source tools to help in this 
area.

In our approach we have used our approach 
to perform simple performance testing, estab-
lishing performance metrics for “Search” from 
distant global locations.

Load Testing

This form of testing is concerned with ensur-
ing that the software performs as expected 
under concurrent user load. Often this type of 
testing is mandated when the software archi-
tecture is Client-Server. The Server-side will 
need to be highly resilient and fail-safe, as the 
number of “logged-in” users grows and per-
forms specified key business tasks. As in the 
case of Performance Testing, there are a num-
ber of tools on the market for performing this 
type of test.

Where’s the “Agile” Part?
With project-based testing, especially where 
development is performed in a relatively short 
time frame, its important that the QA/Test ap-
proach and any Automated Testing approach 
takes account of this project feature. For test 
automators its important to have a strong tech-
nical basis, on which to incrementally extend 
the range of functionality that is tested; and 
for this to happen, we need to look for agil-
ity in the same way that a software develop-
ment team might. The interplay between the 
QA/Test and development workstreams must 
be based upon iterative builds and a constant 
flow of new and expected fixed defects at the 
build points, which in turn underlines the vital 
role Defect Management has in achieving an 
Agile process. 

This rapid cycling of defects to-and-fro be-
tween QA and development is the hinge of our 
Agile approach, leading to strong defect re-
duction over the full project cycle. Alternative 
strategies, such as V-Model/Waterfall cannot 
render this kind of positive dynamic.

Which Tool & Why
As the product under development was Java-
Swing based, the decision was taken to adopt 
QF-Test2. There are a range of tools that could 
have been chosen, so why this one? 

This tool has the following striking char-
acteristics which make it stand out from the 
crowd:

strong and intelligent connection with the •	
Java VM, object creation and destruction 
are events that get announced over this 
connection

has first-class Exceptions reflecting things •	
happening in the test project itself as well 
as what is happening in the Software Un-
der Test (SUT)

has a powerful, extensible Name Resolv-•	
ing architecture, which allows a wide 
range of name replacements to be per-
formed for cases that are very common, 
but quite challenging, in real-life soft-
ware

has the Jython language as an extension •	
to its built-in programming paradigm 
(e.g. can instantiate objects from SUT), 
which enables some very elegant tactics 
to be employed to get at objects of the UI 
and their properties

embraces the use library structure in test •	
projects, which allows a structure to be 
introduced as between project-specific 
and generic concerns

allows the development of data-driven •	
tests using its built-in programming para-
digm, which allows a very wide set of 
data to be used in tests. This represents a 
significant feature of “scaling-up” in au-
tomated testing.

Taking Exception

One of the powerful characteristics of QF-Test 
is its use of first-class exceptions which relate 
directly to what’s happening in the SUT as 
well as in the test project itself. Being able to 
code/script tests using real exceptions makes 
the eventual design very well patterned as well 
as effective. 

What’s in a Name?

One of the major difficulties encountered when 
attempting to automate testing a real-world 
project context, is the ability to reliably assign 
names to objects that appear in the UI of the 
Software Under Test (SUT). QF-Test contains 
a very effective and extensible Name Resolv-
ing architecture. A range of visual elements in 
the SUT of the project in question demanded 
that the automation tool had a strong capabil-
ity in dealing with object naming.
2	 www.qfs.de

Talking to Objects

The project for which the automated testing 
solution was developed, involved an advanced 
graphical UI, in which the “real estate” of 
visual objects extended beyond the physical 
viewport of the screen. The extent of this real 
size was governed by a range of characteristics 
within the model being displayed. The objects 
viewed by the user have associated editing 
dialogs, which naturally are things we as test 
automators need to get at to perform assertive 
testing. The resolution of this problem criti-
cally rested on the provision of a special ob-
ject within the main application frame, which 
contained methods which could be invoked by 
Jython to open the editor panel for an object 
specified by its “path” within the overall visual 
structure, and thus allowed us to gain access to 
these otherwise off-screen visual objects. The 
overall visual structure is also available by 
means of these built-in object methods. 

Generic Controls
In order to meet our target of Agile test auto-
mation, an early sub-project in the QA work-
stream, was the development of a Generic 
Library, which would enable the software-spe-
cific workflows to have tests “coded” as fast 
as possible. We could benefit (as in normal 
software development practice) from “code” 
re-use and general applicability, depending 
only upon the values of parameters. The im-
portance of such a Generic Library cannot be 
overestimated in our achievement of an Agile 
automation process.

Where are we?
The pattern of solution for test automation of-
fered here, embracing both the detail of how 
we perform this often very challenging task, 
as well as its relationship and fit with other 
parts of the overall project landscape, has 
now been in place for a number of years. The 
pattern takes full account of the fundamental 
challenges of test automation - which usually 
render the outcome in alternative approaches 
to rather less like testing and more like driving 
the software as a benign and careful “user” - is 
today fully part of the target project.

The software has undergone, from inception, 
4 years of successful global deployment. Test 
automation was begun with the development 
of the Generic Library capability as a key 
precursor to the main task, in version 2 of the 
software.

The automation project itself is in the process 
of being handed over to the central support 
groups for them to use as part of their ensuring 
that maintenance changes will not adversely 
affect the correct operation of a crucial busi-
ness tool which plays a central role in the Un-
derwriters day-to-day activities.



88 The Magazine for Professional Testers www.testingexperience.com

David Harrison works as an independent 
software QA/Test Manager – currently 
at SwissRe, Zurich, Switzerland within 
the tools development group. This group 
has the mandate to develop and deploy 
reinsurance costing tools to the actu-
ary and underwriter desktop. He can be 
contacted at dharrison_ch(a-t)yahoo(dot)
co(dot)uk.
This article is based on material from his 
forthcoming book: “Automated Software 
Testing for Java-Swing; A Pattern of Solu-
tion”, to be published in June, 2009.

Biography

Kanzlei Hilterscheid

Farbwerte

CMYK: 
56, 11, 0, 18

RGB: 
105, 137, 175

Pantone: 
645 u

Kanzlei Hilterscheid

Farbwerte

CMYK: 
56, 11, 0, 18

RGB: 
105, 137, 175

Pantone: 
645 u

Berlin, Germany

IT Law
Contract Law

German
English
French
Spanish

www.kanzlei-hilterscheid.de
info@kanzlei-hilterscheid.de

Kanzlei Hilterscheid

Farbwerte

CMYK: 
56, 11, 0, 18

RGB: 
105, 137, 175

Pantone: 
645 u

©
 K

at
rin

 S
ch

ül
ke


